skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lionetti, Seth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flying insects are equipped with complex olfactory systems, which they utilize to seek food, identify mates, and evade predators. It is suspected that insects flap their wings to draw odor plumes toward their antennae, a behavior akin to mammals' sniffing, aimed at enhancing olfactory sensitivity. However, insects' wing kinematics change drastically as their flight speed increases, and it is unknown how these changes affect the insect's odorant perception. Addressing this gap in knowledge is crucial to a full understanding of the interplay between insects' aerodynamic performance and sensory perception. To this end, we simulated odor-tracking hawkmoth flight at 2 and 4 m/s using an in-house computational fluid dynamics solver. This solver incorporated both the Navier–Stokes equations that govern the flow, as well as the advection-diffusion equation that governs the odor transport process. Findings indicate that hawkmoths enhance odor intensity along their antennae using their wings, with peak odor intensity being 39% higher during 2 m/s flight compared to 4 m/s flight. This demonstrates there is a trade-off between rapid transport and olfaction, which is attributable to differences in wing kinematics between low- and high-speed flights. Despite literature suggesting hawkmoths are limited to steady forward flights at speeds below 5 m/s—about half of what is theoretically predicted based on body mass—this study reveals that slower flight speeds improve their olfactory capabilities during navigation. Our findings offer insights into the evolution of flight and sensory capabilities in hawkmoths, as well as provide inspiration for the development of bio-inspired odor-guided navigation technologies. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract As insects fly, their wings generate complex wake structures that play a crucial role in their aerodynamic force production. This study focuses on utilizing reduced order modeling techniques to gain valuable insights into the fluid dynamic principles underlying insect flight. Specifically, we used an immersed-boundary-method-based computational fluid dynamics (CFD) solver to simulate a hovering hawkmoth’s wake, and then identified the most energetic modes of the wake using proper orthogonal decomposition (POD). Furthermore, we employed a sparse identification of nonlinear dynamics (SINDy) approach to find a simple reduced order model that relates the most energetic POD modes. Through this process, we formulated multiple different models incorporating varying numbers of POD modes. To compare the accuracy of these models, we utilized a force survey method to estimate the aerodynamic forces produced by the hawkmoth’s wings. This force survey method uses an impulse-based approach to calculate the aerodynamic lift and drag based solely on the velocity and vorticity information provided by the model. By comparing the estimated aerodynamic force with the actual force production calculated by the CFD solver, we were able to find the simplest model that still provides an accurate representation of the complex wake produced by the hovering hawkmoth wings. We also evaluated the stability and accuracy of this model as the number of flapping cycles increases with time. The reduced order modeling of insect flight has important implications for the design and control of bio-inspired micro-aerial vehicles. In addition, it holds the potential to reduce the computational cost associated with high-fidelity CFD simulations of complex flows. 
    more » « less
  3. Metachronal rowing is a biological propulsion mechanism employed by many swimming invertebrates (e.g. copepods, ctenophores, krill and shrimp). Animals that swim using this mechanism feature rows of appendages that oscillate in a coordinated wave. In this study, we used observations of a swimming ctenophore (comb jelly) to examine the hydrodynamic performance and vortex dynamics associated with metachronal rowing. We first reconstructed the beating kinematics of ctenophore appendages based on a high-speed video of a metachronally coordinated row. Following the reconstruction, two numerical models were developed and simulated using an in-house immersed-boundary-method-based computational fluid dynamics solver. The two models included the original geometry (16 appendages in a row) and a sparse geometry (8 appendages, formed by removing every other appendage along the row). We found that appendage tip vortex interactions contribute to hydrodynamic performance via a vortex-weakening mechanism. Through this mechanism, appendage tip vortices are significantly weakened during the drag-producing recovery stroke. As a result, the swimming ctenophore produces less overall drag, and its thrust-to-power ratio is significantly improved (up to 55.0 % compared with the sparse model). Our parametric study indicated that such a propulsion enhancement mechanism is less effective at higher Reynolds numbers. Simulations were also used to investigate the effects of substrate curvature on the unsteady hydrodynamics. Our results illustrated that, compared with a flat substrate, arranging appendages on a curved substrate can boost the overall thrust generation by up to 29.5 %. These findings provide new insights into the fluid dynamic principles of propulsion enhancement underlying metachronal rowing. 
    more » « less
  4. Flying insects possess sophisticated olfactory systems that they use to find food, locate mates, and avoid predators. It is suspected that insects flap their wings to draw odor plumes toward their antennae. This behavior enhances their olfactory sensitivity and is analogous to sniffing in mammals. However, insects’ wing kinematics change drastically as their flight speed increases, and it is unknown how these changes affect the insect’s odorant perception. To address this question, we simulated odor-tracking hawkmoth fight at 2 m/s and 4 m/s using an in-house immersed-boundary-method-based CFD solver. The solver was used to solve the Navier-Stokes equations that govern the flow, as well as the advection-diffusion equation that governs the odor transport process. Results show that hawkmoths use their wings to significantly increase the odor intensity along their antennae. However, peak odor intensity is 39% higher during 2 m/s flight than 4 m/s flight. We therefore suspect that insects have greater olfactory performance at lower forward flight speed. Findings from this study could provide inspiration for bio-inspired odor-guided navigation technology. 
    more » « less